Controlled Sampling on Packed Micro Extraction Needles (NeedleTrap)

Dietmar Hein
PAS Technology Deutschland GmbH
Singapore, 28th of Juli
Outline

• NeedleTrap (NT or NTD / NeedleEx) fundamentals:
 • geometry and packings, conditioning, transport, storage

• Sampling
 • Ambient air/room air
 • Process sampling
 • dynamic and P & T sampling with or without external purge gas

• Sampling case
• NT desorption of „wet“ or „dry“ samples
• Automated injection devices
• Summary
Needle Trap

Packings:
- porous organic polymere (Tenax, DVB, PDMS, ...)
- graphitized carbons (Carbopack, ...)
- carbon molecularsieve (Carbosieve, Carboxen, ...)

Sampling → Desorption

week, middlestrong, strong sorbens
Needle Trap

Working range of typical sorbents:

- Carboxen 1000: C 2 to C 6 (strong sorbent)
- Carbopack X: C 3 to C 8 (middle strong sorbent)
- PDMS: C 4 to C16 (weakest sorbent, lowest polarity)
- Tenax: C 7 to C 20 (weakest sorbent)
- DVB: C 7 to C 20 (weakest sorbent, relative high polarity)

Any sorbent with 60 - 120 mesh in any possible combination of up to three different sorbents can be packed.
Needle Trap

Shinwa Chemical Industries Ltd., Kyoto, Japan has developed a range of selective co-polymere packings:

- Organic solvent: most organic solvents which include polar and non-polar solvents
- Trimethyl amine: lower amines can be selectively absorbed
- Fatty acid: propionic acid, isobtyric acid, n-butyric acid and isovaleric acid can be absorbed
- Petroleum: high selectivity for volatile petroleum compounds
Needle Trap

NT-Design:

- Luer-Lock connection
- Lengths: between 50 mm and 70 mm (pending on temperature profile of injector!)
- dimensions: gauge 22 (0,72 mm/0,4 mm) or Gauge 23 (0,64 mm/0,35 mm)
- tip form: cone (side hole, blunt, ... on request)
Needle Trap

Conditioning:

• (manual injected NT) in the GC-injector after desorption.
 • Switch injector mode from splitless to split after desorption.
 • Draw a small volume of some 100 µl carrier gas with a syringe
 • Eject after a few seconds. Repeat this step three times.

• use a commercially available 48 position NeedleTrap-conditioner (up to 48 needles, 25 °C - 300 °C).
Needle Trap

Transport:

- Cap tip and luer-connection with PTFE-caps
- Use container for shipping.
- Special sized NTD are supplied with a glass container, screw cap and Si/PTFE septa.
Needle Trap

Storage:

• PTFE capped NT can usually be stored a few days without any problem.

• Specifically labile or reactive compounds have a fewer chance for reaction or decomposition due to small surfaces and strong adsorption.

• Compared to other VOC sampling techniques (tedlar-bags, canister, thermal desorption tubes or even SPME) there is significantly less loss of compounds during transport and storage of NTD in most application.
Needle Trap

Recoveries (%) of spiked breath gas samples after storage for 10 h (light gray), 3 days (medium gray), and 7 days (black).
Needle Trap

General sampling conditions (pending on sorbent, matrix and analytes):

• Sampling flow: 5 – 15 ml/min

• Maximum mass of sampled compounds: typically in the range of some 100 ng absolute.

• Breakthrough volume: Typically in the range of some 100 ml, if concentration range is µg/l.
Needle Trap

Sampling Devices:

- Gas-tight syringe with Luer-connector. A wide range of volumes is available (0.5 ml up to 100 ml)
- Hand sampling pump AP-20 (20, 50 and 100 ml)
- Sampling cases:
 4 V DC, 10 Ah battery, 100 – 230 VAC charging station, Electronic MFC : 1 ml/min – 50 ml/min or 5 ml/min – 250 ml/min,
 Vacuumpump, Sampling volume: 10 ml – 10 l
- µ-processor controller, LCD display
Needle Trap

Sampling Mode:

- Ambient Air Sampling

Sampling Case
Needle Trap

Sampling Mode:

- Process Sampling
Needle Trap

Sampling Mode:
- Purge & Trap sampling
Needle Trap

Sampling Mode:
• Dynamic HS sampling
Needle Trap

Sampling Mode:

- P & T sampling with external purge gas
Needle Trap

Sampling Mode:

- Dynamic HS sampling with external gas

Diagram:

- Purge Gas in
- Sampling Case
- NT
Needle Trap

Sampling Mode:

- passive sampling (TWA, Time-Weighted Average sampling)
Impact of water, sampling human breath:

@37 °C, 100 % rH = 44 mg/l H2O
@22 °C, 100 % rH = 20 mg/l H2O

Sampling 20 ml: approx. 25 mg/l x 20 ml = 0,5 mg or 0,5 μl H2O

During desorption, this leads to approx. 500 μl H2O vapour.

Total dead volume of NTD is approx. (pending on geometry of needle) up to 5 μl.

A pressure of up to 100 bar is build up, when water evaporates!

The water vapor purges the desorbed compounds out of the needle, on to the column.
Needle Trap

General Desorption Conditions:

• Injection-mode: Splitless
• Desorption- (injector-) temperature is pending on sorbents (typically between 200 and 300 °C.)
• Column and GC-temperature program need to be selected, pending on the application.
• SPME-liner has to be installed!
Needle Trap

Manual Desorption of “wet” samples:

- Remove PTFE cap on tip of NTD. Keep cap at luer-connection closed.
- Inject NTD, when “GC-Ready” and start GC.
- Remove NTD after 15 – 30 s.
- Alternatively NTD may remain additional 30 – 60 seconds in the injector to condition NTD. Open split of GC injector after desorption time.
Needle Trap

Manual Desorption of “dry” samples:

• Remove PTFE-cap on luer-connection and connect NTD with gastight luer-glas syringe (100 µl – 1 ml).

• Remove PTFE cap on NTD tip and inject NTD for 1 cm into injector (keep sorbent outside of hot area!) and draw 100 µl – 1 ml of carrier gas into syringe.

• When GC “ready” inject whole NTD, wait for 15 s and eject 100 µl – 1 ml of the drawn gas.

• Start GC and remove NTD.

• Alternatively NTD may remain additional 30 – 60 seconds in the injector to condition NTD. Open split of GC injector after desorption time. Draw and eject 3 times 100 µl – 1 ml, while NTD is in the injector.
Needle Trap

Automated desorption of NTD, using CONCEPT NT Autosampler

- CONCEPT NT can be adapted to any commercially available GC
- NTD are capped with a magnetic cap on the luer-connector and cap on the tip and put into position tray.
- Autosampler- and GC-sequence needs to be written
- System is started with CONCEPT Software.
Needle Trap

Automated desorption of NTD, using CONCEPT NT Autosampler

- After “GC-Ready”, the system takes the NTD by magnetic rod and moves NTD to the decapper station, where cap of the tip of NTD is
Needle Trap

Automated desorption of NTD, using CONCEPT NT Autosampler

- CONCEPT NT transfers NTD to the injector, injects and starts GC
- After desorption time, NTD is removed automatically and transferred back to the tray.
- When GC becomes ready again, NTD is taken and handled in the same way, until all tray loaded NTD are analyzed.
Needle Trap

Automated desorption of NTD for “dry” application

- "wet" application do have 100 % of transfer and no carryover, due to the water effect.
- Since there is no active gas flow through NTD during desorption, “dry" application may show incomplete transfer of compounds and high carryover!
- It is recommended to load an appropriate amount of vapor phase on NTD after sampling took place.
- New NTD-design, optimized for “dry” application is currently under evaluation and will be introduced soon.
Needle Trap

Automated desorption of NTD for “dry” application
Needle Trap

Summary:

- NT can handle most VOC-application.
- NT is easy to use.
- NT can achieve low detection limits (vppt - vppb).
- NT gives additional information to SPME, since bounded compounds are analyzed, too.
- NT does not need any cryo-focussing.
- NT need low sample volumes and can sample very punctual.
Needle Trap

Acknowledgements:

• Prof. Pawliszyn and his group members from Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada, who worked the past couple of years to develop NTD technology.

• SHINWA CHEMICAL INDUSTRIES LTD., 502, Kagekatsucho, Fushimiku, Kyoto 6128307, JAPAN for supplying NTD and developing new packings and packing technologies.

• Dr. Wolfram Miekisch and his group members from University Hospital of Rostock, Clinic for Anaesthesia and Intensive Care Theraphy, Schillingallee 35, 18057 Rostock, Germany for fundamental evaluation of NTD technology in human breath gas analysis.
Needle Trap

References:

• InYong Eon, Janusz Pawliszyn, Journal of Separation Science, 2008, 31, 2283 2287, "Simple sample transfer technique by internally expanded desorption flow for needle trap devices"

• SHINWA CHEMICAL INDUSTRIES LTD., 502 Kagekatsucho, Fushimiku, Kyoto 6128307, JAPAN, Publication #: "CN1009B, NeedleEx Technical Information"

• Jamie Warren, Janusz Pawliszyn, Poster on Pittcon 2011, "Development of a New Design of Needle Trap Device for Improved Desorption"
Thank you!!!